128 research outputs found

    Energy balance and time-scales of mixing and stratification in the Jaboatão estuary, NE-Brazil

    Get PDF
    Estuarine systems undergo different physical processes that simultaneously control their stratification and mixing dynamics. This energy balance determines both, the estuarine hydrodynamics and the dynamics of water. This article presents a quantitative and comparative analyses between the forces maintaining stratification (surface heating; rainfall precipitation; and differential advection of the longitudinal density gradient due to the vertical velocity field) and those responsible for the vertical mixing (mechanical stirring of bottom tidal stress; mechanical stirring ofsurface wind stress; and surface evaporation) in the lower estuary ofthe Jaboatão River (JE), Pemambuco, NE-Brazil. The energy available to mix the water column at the' lower Jaboatão was 2.2 and 2.0-fold greater than that available to promote stratification, during the dry and rainy seasons, respectively. The bottom shear turbulence caused by the tides was the major source of energy for the vertical mixing. A theoretical analyses revealed that the turbulence decay time-scale io both seasons was much greater (dry=29min; rainy=25 min) than the stratification time-scale (dry=8 mio; rainy=7 min) and than the slack water time-scale (15 min). Thus the estuary was vertically well-mixed even during slack water periods during both, dry and rainy seasons. Theoretical results were confirmed by field data and are in agreement with earlier numerical simulations.Sistemas estuarinos estão sujeitos à influência simultânea de processos fisicos que controlam tanto sua dinâmica de estratificação quanto de mistura. Este balanço energético determina seu comportamento hidrodinâmico e a dinâmica das propriedades da água. O presente artigo apresenta uma análise quantitativa e comparativa das forças de manutenção da estratificação (aquecimento superficial; precipitação pluviométrica e advecção diferencial do gradiente longitudinal da densidade devida ao campo vertical da velocidade), e daquelas responsáveis pela mistura vertical (turbulência de fimdo devido às marés; turbulência de superficie devida à ação dos ventos e evaporação superficial) no baixo estuário do Rio Jaboatão (JE), Pemambuco, NE-Brasil. A quantidade de energia disponível para misturar a coluna d'água foi 2,2 e 2 vezes maior que aquela disponível para manter a estratificação durante as estações seca e chuvosa, respectivamente. O atrito turbulento de fimdo pelas marés foi a principal fonte de energia do sistema para a mistura da coluna d'água. Uma análise teórica revelou que a escala de tempo para o decaimento turbulento nas duas estações sazonais foi superior (seca=29 min; chuvosa=25min) que a escala de tempo para estratificação (seca=8min; chuvosa=7 min) e que a escala de tempo dos estofos de maré (15 min). Assim, o estuário apresentou-se verticalmente bem misturado mesmo durante os estofos de preamar e baixa-mar tanto na estação seca quanto chuvosa. Os resultados teóricos foram confirmados pelos dados de campo e estão em concordância com aqueles obtidos em estudos prévios de simulação numériCa

    Seasonal changes in the mixed and barrier layers in the western Equatorial Atlantic

    Get PDF
    O clima está fortemente relacionado com a dinâmica da camada superficial do Atlântico tropical e com as trocas entre esta e a atmosfera, e a previsão do tempo melhorará à medida em que ganhemos um melhor entendimento dos processos que governam a distribuição relativa das propriedades termodinâmicas na coluna d'água. O presente trabalho focaliza o isolamento das águas quentes superficiais das águas frias profundas pela camada de barreira (CB) induzida pela salinidade no Atlântico Equatorial Oeste (3ºS-7ºN; 40º-52ºW), com base em 487 perfis de CTD (REVIZEE - 1995-2001). O principal processo que contribue para a formação sazonal da CB é a descarga fluvial de águas doces do rio Amazonas. Durante o final do inverno/primavera boreal (Mar-Mai; alta descarga), prevalecem camadas isotérmica (Z T) e de mistura (Z M) mais profundas e a formação de uma CB com 16m de espessura foi governada pelo estabelecimento de uma forte picnoclina induzida pela salinidade, no interior da camada isotérmica. Entretanto, durante o outono boreal (Out-Dez; baixa descarga), estratificações em densidade foram principalmente controladas pela distribuição de temperatura (Z M m Z T; ECB = Z M - Z T m 0). Embora não tenha registrado uma CB sobre a plataforma Amazônica, uma CB máxima (40m) foi formada próxima à quebra da plataforma a 45°W.Climate is closely related to the dynamics of the surface layer of the tropical Atlantic and the exchange between this latter and the atmosphere, and wearther forecasting will improve with increasing understanding of the processes that govern the relative distribution of thermodynamic properties of the water column. This paper focuses on the isolation of warm surface waters from the cold ones of the deep ocean by a salinity induced barrier layer (BL) in the western equatorial Atlantic (3ºS-7ºN; 40º-52ºW), based on 487 CTD profiles (REVIZEE - 1995-2001). The main process contributing to the seasonal BL formation is the discharge of low salinity waters from the Amazon river. During boreal late winter/spring (Mar-May; high river discharge), deeper isothermal (Z T) and mixed layers (Z M) prevail and the formation of a 16m-thick BL was clearly determined the formation of a salt-induced marked pycnocline within a deeper isothermal layer. However, during the boreal autumn (Oct-Dec; low river discharge), density stratification was mainly determined by temperature distribution (Z M m Z T; BLT = Z M - Z T m 0). There was no clear register of a BL on the Amazon shelf, but a maximum BL (40 m) formed near the shelf break at 45°W

    Vertical Turbulent Cooling of the Mixed Layer in the Atlantic ITCZ and Trade Wind Regions

    Get PDF
    The causes of the seasonal cycle of vertical turbulent cooling at the base of the mixed layer are assessed using observations from moored buoys in the tropical Atlantic Intertropical Convergence Zone (ITCZ) (4°N, 23°W) and trade wind (15°N, 38°W) regions together with mixing parameterizations and a one-dimensional model. At 4°N the parameterized turbulent cooling rates during 2017–2018 and 2019 agree with indirect estimates from the climatological mooring heat budget residual: both show mean cooling of 25–30 W m (Formula presented.) during November–July, when winds are weakest and the mixed layer is thinnest, and 0–10 W m (Formula presented.) during August–October. Mixing during November–July is driven by variability on multiple time scales, including subdiurnal, near-inertial, and intraseasonal. Shear associated with tropical instability waves (TIWs) is found to generate mixing and monthly mean cooling of 15–30 W m (Formula presented.) during May–July in 2017 and 2019. At 15°N the seasonal cycle of turbulent cooling is out of phase compared to 4°N, with largest cooling of up to 60 W m (Formula presented.) during boreal fall. However, the relationships between wind speed, mixed layer depth, and turbulent mixing are similar: weaker mean winds and a thinner mixed layer in the fall are associated with stronger mixing and turbulent cooling of SST. These results emphasize the importance of seasonal modulations of mixed layer depth at both locations and shear from TIWs at 4°N

    Seasonal variability of the Atlantic Meridional Overturning Circulation at 11° S inferred from bottom pressure measurements

    Get PDF
    Bottom pressure observations on both sides of the Atlantic basin, combined with satellite measurements of sea level anomalies and wind stress data, are utilized to estimate variations of the Atlantic Meridional Overturning Circulation (AMOC) at 11∘ S. Over the period 2013–2018, the AMOC and its components are dominated by seasonal variability, with peak-to-peak amplitudes of 12 Sv for the upper-ocean geostrophic transport, 7 Sv for the Ekman and 14 Sv for the AMOC transport. The characteristics of the observed seasonal cycles of the AMOC and its components are compared to results from an ocean general circulation model, which is known to reproduce the variability of the Western Boundary Current on longer timescales. The observed seasonal variability of zonally integrated geostrophic velocity in the upper 300 m is controlled by pressure variations at the eastern boundary, while at 500 m depth contributions from the western and eastern boundaries are similar. The model tends to underestimate the seasonal pressure variability at 300 and 500 m depth, especially at the western boundary, which translates into the estimate of the upper-ocean geostrophic transport. In the model, seasonal AMOC variability at 11∘ S is governed, besides the Ekman transport, by the geostrophic transport variability in the eastern basin. The geostrophic contribution of the western basin to the seasonal cycle of the AMOC is instead comparably weak, as transport variability in the western basin interior related to local wind curl forcing is mainly compensated by the Western Boundary Current. Our analyses indicate that while some of the uncertainties of our estimates result from the technical aspects of the observational strategy or processes not being properly represented in the model, uncertainties in the wind forcing are particularly relevant for the resulting uncertainties of AMOC estimates at 11∘ S

    Interannual to decadal changes in the western boundary circulation in the Atlantic at 11°S

    Get PDF
    The western boundary current system off Brazil is a key region for diagnosing variations of the Atlantic meridional overturning circulation (AMOC) and the southern subtropical cell. In July 2013 a mooring array was installed off the coast at 11°S similar to an array installed between 2000 and 2004 at the same location. Here we present results from two research cruises and the first 10.5 months of moored observations in comparison to the observations a decade ago. Average transports of the North Brazil Undercurrent and the Deep Western Boundary Current (DWBC) have not changed between the observational periods. DWBC eddies that are predicted to disappear with a weakening AMOC are still present. Upper layer changes in salinity and oxygen within the last decade are consistent with an increased Agulhas leakage, while at depths water mass changes are likely related to changes in the North Atlantic as well as tropical circulation changes

    Alkalinity, inorganic carbon and CO2 flux variability during extreme rainfall years (2010-2011) in two polluted tropical estuaries NE Brazil

    Get PDF
    The susceptibility of coastal environments to shifts in the biogeochemical cycles of carbon and nutrients driven by anthropogenic pressure and climate change is a real challenge for the scientific community. This paper evaluated the effects of an extreme rainfall event over the nutrients and carbonate parameters in two polluted tropical estuaries. Surface water samples were taken seasonally along a salinity gradient in the Capibaribe and Barra de Jangadas estuaries in order to investigate the spatial and seasonal variability of dissolved nutrients, chlorophyll-a, dissolved oxygen, total alkalinity, inorganic carbon, partial pressure of CO2 (pCO2) and CO2 fluxes. The increased riverine influence caused by the fluvial flooding during the extremely rainy season augmented the nitrogen concentrations in the plumes, which also presented reduced salinity, alkalinity and dissolved oxygen values. In the Capibaribe plume it has also shifted the mean CO2 flux value of - 4.01 mmolC m-2 d-1 during the dry season, to a positive mean flux of + 5.7 mmolC m-2 d-1 during the rainy season. Within the estuaries the BOD5,20 and dissolved phosphorus values were higher during the dry season (pA suscetibilidade dos ambientes costeiros às mudanças nos ciclos biogeoquímicos do carbono e nutrientes impulsionados pela pressão antrópica e mudanças climáticas é um verdadeiro desafio para a comunidade científica. Este artigo avaliou os efeitos de um evento de precipitação extrema sobre os parâmetros de oxigênio, nutrientes e do sistema carbonato em dois estuários tropicais poluídos. As amostras de água superficial foram retiradas sazonalmente ao longo de um gradiente de salinidade nos estuários do Capibaribe e Barra de Jangadas, a fim de investigar a variabilidade espacial e sazonal dos nutrientes dissolvidos, clorofila-a, oxigênio dissolvido, alcalinidade total, carbono inorgânico, pressão parcial de CO2 (pCO2) e fluxos de CO2. O aumento da influência ribeirinha causada pelas inundações fluviais durante a estação de precipitação extrema aumentou as concentrações de nitrogênio nas plumas dos estuários, que também apresentaram valores reduzidos de salinidade, alcalinidade e oxigênio dissolvido. Na pluma do Capibaribe o valor médio de fluxo de CO2 também mudou, passou de - 4,01 mmolC m-2 d-1 durante a estação seca, para um fluxo médio positivo de + 5,7 mmolC m-2 d-1 durante a estação chuvosa. Dentro dos estuários, os valores de BOD5,20 e fosfato dissolvido foram maiores durante a estação seca (
    corecore